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Question 1 (7 marks) 
 
Determine the following integrals:  
 
 
(a)  (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)                                         (Let  u = sin x) (4 marks) 
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
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





 Recognises the numerator is 
related to the derivative of the 
denominator 
 
Multiplies the integral by -1/3  
 
Integrates correctly, including c 

c
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




Uses correct substitution 
 
Simplifies cos3x dx in terms of  u 
 
Integrates correctly, including c 
 
States the final answer in terms 
of  x
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Question 2 (4 marks) 
 
A function  f(x)  has the following properties: 
 
     f(x) > 0 ,   f(1) = 4      and   f '(1) = 2 
 
 
(a) If                            , find  g'(1).  (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) If                          , find  h'(1). (2 marks) 
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



)x(f)x(h 

Differentiates ln function 
 
Substitutes values to 
determine g'(1) 

Uses chain rule correctly 
 
Substitutes values to 
determine h'(1) 
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Question 3 (7 marks) 
 
 
(a) Prove the following result:                                  (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Evaluate the following limit:                                 (3 marks) 
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





Multiplies the limit by (1+cos x)/(1+cos x) 
 
Simplifies numerator to sin2x 
 
Expresses the limit as the limit of two 
factors 
 
Uses the result  (sin x)/x   1  as  x  0 
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


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






Substitutes  x –   by  y, including the limit 
and the negative sign 
 
Changes  y  y/2, including the factor 1/2   
 
States the answer 

0
x

xcos1
lim

0x





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Question 4 (11 marks) 
 
The points  P  and  Q  have position vectors given by  i + 2j – 4k  and  3i – j + 2k  
respectively. The line joining  PQ  cuts the x-z plane at  R. 
 
 
(a) Find the position vector of the point  R. (5 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Find the ratio at which the point  R  divides  PQ. (3 marks) 
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PQ



Determines the vector PQ 
 
Finds the vector equation of the line PQ 
 
Expresses y = 0 when the line cuts the 
x-z plane 
 
Solves for  
 
Substitutes  into line equation to 
determine the position vector OR 

1:2ratiotheinPQdividesRSo
3

2
h

PQhOPPROPOR



 Expresses OR in terms of OP and PQ, 
including a constant 
 
Deduces the constant =  
 
States the answer 
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(c) Find the vector equation of the plane that passes through  R  and is perpendicular to  
PQ. (3 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

3 is normal to the plane

6
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Eq of the plane : r 3 0 3
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2
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  
 
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     
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     
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 
    
 
 





States the normal vector to   
 
Uses the coordinates of R to give the 
normal form of   
 
Carries out the dot product 
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Question 5 (8 marks) 
 
A line segment  AB  is transformed by a matrix  T  four times to become  CD  as shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) The effect of the  4  transformations by  T  can be carried out by a single 

transformation matrix  S. State the relationship between  T  and  S. (1 mark)  
 
 
 
 
 
(b) Determine the matrix  S. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

C 

D 

4T S

1

4 2 4 14
S

1 2 1 2

4 14 4 2
S

1 2 1 2

4 14 2 21
S

6 1 2 1 4

1 8
S

0 1



    
       

    
        

    
         

 
   

 

States the answer 

Sets up correct matrix equation 
 
Post-multiplies the above 
equation by the inverse of the 
coordinates matrix 
 
Simplifies correctly 
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(c) Describe the geometric effect of matrix  S. (2 marks)  
 
 
 
 
 
 
 
 
 
 
(d) Determine the matrix  T. (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shear parallel to the x axis, scale factor 8. 

41 k 1 4k
Let T then T

0 1 0 1

1 4k 1 8
k 2

0 1 0 1

1 2
T

0 1

   
    
   

   
      

   
 

   
 

Describe shearing parallel to 
the x-axis 
 
Specifies the scale factor 

Represents T and T4 by 
horizontal shear matrix 
 
Solves for k 
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Question 6 (7 marks) 
 
The complex plane below shows one of the roots of the following equation: 
 
       z5 = u    
 
where  u  is a complex number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Locate clearly, on the complex plane above, all the other roots of the equation   
 
    z5 = u   ( 
 
 
 
(b) Determine the complex number  u. (2 marks) 
 
 
 
 
 
 
 
 
 
 
 

Re (z)-3 -2 -1 1 2 3

Im (z)

-3

-2

-1

1

2

3

i32
2

cis32)
10

cis2(u 5









Determines the given root in polar 
form 
 
Simplifies correctly 

Shows correct angle between roots  
 
Shows same modulus for each root 
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(c) Determine the sum of all the roots of the equation  z5 = u. Show your 
working/reasoning clearly.  (3 marks) 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0roots

rootse)rootse(rootsSo

.itselfontopentagonregularthemaps
5
2

ofrotationA

5

2
i

5

2
i








Provides a reasonable working or 
explanation: 
     Recognises a rotation of  2/5  has     
     no effect on the sum of roots 
 
     Expresses the rotation as  e2i/5root 
 
States the answer  



Mathematics: Specialist 3C/3D 12 Section One 
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Question 7 (6 marks) 
 
 
Prove by contradiction that for any two integers  a  and  b:  a2 – 4b  2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2b4aTherefore

wrongwasassumptiontheSo

oddeven

1b2c2

)1b2(2c4

c2aLet

2ofmultipleaisa

2ofmultipleaisa

)1b2(22b4aThen
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2

2

2

2

2
















States the correct assumption 
 
Expresses a2 as a multiple of 2 
 
Deduces a as a multiple of 2 
 
Uses suitable for a to simplify the 
expression 
 
Recognises even+odd = odd 
 
Draws valid conclusion 
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Question 8 (7 marks) 
 
A plane is flying with velocity  v = 0.04i + 0.03j + 0.12k km/s where the unit vectors i, j 
and k point East, North and vertically upwards respectively. 
 
The initial position of the plane is 20 km South of the airport, at a height of 1.0 km. Find: 
 
 
(a)  the speed of the plane,  (1 mark) 

 
 
 
 
 
 
 
 
 
(b)  the angle (nearest degree) of ascent of the plane, (3 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)  the time (whole number) at which the plane is closest to the airport. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s/km13.0

12.003.004.0|v| 222











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ĵ03.0î04.0:planeyxtheonvrojectP
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

s25
0196.02

96.0
twhen|)t(r|

401t96.0t0169.0

)1t12.0()20t03.0()t04.0(|)t(r|

k̂)1t12.0(ĵ)20t03.0(ît04.0)t(r

min

2

2222


















States the correct answer 

Finds 0.04i + 0.03j + 0k 
 
Uses cosine rule to find 
angle 
 
States the correct answer 

Determines r(t) 
 
Finds the distance in 
terms of t 
 
States the correct answer 
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Question 9 (12 marks) 
 
A ladder, 2 metres long, has its base on level ground and its top resting against a vertical 
wall. A ring is fixed  0.5 m  from the base of the ladder as shown below. The ladder starts to 
slip down at a constant rate of  0.1  m/s when it is        metres up the wall.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) How fast (exact value) is the foot of the ladder moving away from the wall initially.  
  (5 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 

y 

(u, v) 

s/m
10

3

)1.0(
1

3

td

yd

x

y

td

xd

2yx 222









Sets up the equation relating x and y 
 
Expresses dx/dt in terms of dy/dt 
 
Determines the initial value of x 
 
Substitutes values 
 
States the answer 

3

2  m 
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(b) How fast is the ring moving down (vertically)? (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) How far is the ladder up the wall when the ring is moving with a speed of               .  
   
  (4 marks) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

s/m
40

1
atdownmovingRing

40

1

td

vd

td

yd

4

1

td

vd

1

4

v

y

:trianglesSimilar





Sets up the equation relating v and y 
 
Expresses dv/dt in terms of dy/dt 
 
States the answer 
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1
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1
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3
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x

y
(

4

3

td
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4

3
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22

2

2

222

2















Expresses du/dt in terms of dx/dt 
 
Expresses du/dt in terms of y only 
 
Sets up equations relating speed and 
velocity components 
 
Solves equation 

x 

y 
(u, v) 

2  m 
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Question 10 (9 marks) 
 
A particle moves along a straight line and its displacement  x  metres from a fixed point  
O  on the line after  t  seconds is given by: 
 
      x = 10 sin (kt – ) 
 
where  k  and    are positive constants and  0   < /2. 
 
The particle passes through the point  O  for the first time after  2  seconds and for the 
second time after  7  seconds. 
 
 
(a) Find the values of  k  and  . (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The particle is furthest away from  O  the second time when  t = T  seconds. 
  
(b) (i) Determine the value of  T. (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5

2

0)2(
5

0x,2t

5
k

27)
k

2
(

2

1
)period(

2

1
















Sets up the equation for ½ 
period  
 
Solves for  k 
 
Uses x = 0 when t = 2 
 
Solves for  

s5.9T
2

3

5

2
T

5
timecondse












Shows 2nd max displacement 
occurs when kT -  = 3/2 
 
Solves for T 
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 (ii) Find the distance travelled by the particle for the first  T  seconds. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m51.39

)
5

2
(sin1030ncedista

)
5

2
(sin10)0(x







 Determines x(0) 

 
Shows distance given by  
| x(0) | + 30 
 
States the answer 
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Question 11 (7 marks) 
 
In the figure below,  OABC  is a trapezium with  AB  parallel to  OC  and  2AB = OC. The 
diagonals intersect at  P.  
 
Let                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)    (2 marks) 
 
 
 
 
 
 
 
 
 
 
Let 
 
 
(b)    (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 

c
2

1
aOB

acAC







States the answers 

Expresses OP as OA + AC  
 
Simplifies correctly 

P 

O A 

B 

C 

c


a


cOCandaOA




candaoftermsinOBandACExpress


ACAP 

Express OP in terms of , a and c.
  

ca)1(

)ac(a

APaOP










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(c) Determine the value of  .   (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3
1

2
1

and1

)c
2
1

a(OPThen

OBOPLet

ca)1(OP














Expresses OP in terms of OB 
with a constant  
 
Equates corresponding 
components from (b) and (c) 
 
Solves for  
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Question 12  (12 marks) 
 
A population of female bats living in a cave is studied and the following data is collected. 
 

Age (months) 0 – 6  6 – 12 12 – 18 18 – 24 

Initial population 4500 1800 900 130 

Birth rate 0 1.9 1.5 0.7 

Survival rate 0.5 0.8 0.4 0 

 
 
The initial female population is represented by a column matrix as shown below. 
 
 
 
 
 
 
 
 
 
 
(a) Use a Leslie matrix  L  to represent the above birth rates and survival rates so that it 

can be used to calculate the female populations for subsequent years. (1 mark) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Write down a matrix equation that can be used to find the female population for 

each age group of the bats after  6  months. Do not evaluate. (1 mark) 
 
 
 
 
 
 
 
 
 
 

2418

1812
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60
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1800
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Po

















































04.000

008.00

0005.0

7.05.19.10

L

o1 PLP 

States the correct answer 

States the correct answer 
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(c) What is the total female population after  4  years? (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) Given that the total female population after  5  years is  58890, find the percentage 

increase in the population every  6  months from year 4 to year 5. (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Culling (Harvesting) is carried out for the age group  6 – 12  months at a rate of  30%  
with the intention of maintaining a stable population. The culling rate affects both the birth 
rate and the survival rate. 
 
(e) Write down the new Leslie matrix. (1 mark) 
 
 
 
 
 
 
 
 
 
 
 

38945P]1111[populationtotal,years4After

1903

5866

9013

22163

130

900

1800

4500

04.000

008.00

0005.0

7.05.19.10

PLP

8

8

o
8

8































































.months6every

%23ofrateaatngincreasiisPopulation

2297.1
38945
58890

rate1





Uses L8 to find P8  
 
Gives the total population 

Sets up the correct equation 
 
States the answer 





















04.000

0056.00

0005.0

7.05.133.10

'L
States the correct answer 
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(f) If  Pn  is the stable population, write down the population  Pn+1  after  6  months in 
terms of  Pn  and/or some constants and matrices (if necessary). (1 mark) 

 
 
 
 
 
 
 
 
(g) Determine whether or not  30%  is a reasonable culling rate in order to maintain a 

stable population. (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12
12 o

14
14 o

16
16 o

P [1 1 1 1] (L ') P 15075

P [1 1 1 1] (L ') P 17028

P [1 1 1 1] (L ') P 19234

population is increasing

So 30% cannot maintain a stable population.

   

   

   



States the answer 

Determines the trend of population 
change (use at least 3 populations 
for some large t) 
 
Provides a reason from part (f) 
 
Draws a valid conclusion

n1n PP 

reasonablenot

4.0h

dc4.0

cb)h1(8.0

ba5.0

ad7.0c5.1b)h1(9.1

d

c

b

a

d

c

b

a

04.000

00)h1(8.00

0005.0

7.05.1)h1(9.10

OR


















































































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Question 13 (7 marks) 
 
Prove by mathematical induction that, if  n  is a positive integer, 
 
  
 
 
 

 
 
 
 

)2n()1n(n
6

1
n1)1n(2......3)2n(2)1n(1n 

1
P(n) : n 1 (n 1) 2 (n 2) 3 ...... 2 (n 1) 1 n n(n 1)(n 2)

6
When n 1:

1
LHS 1 1 1 and RHS (1)(1 1)(1 2) 1

6
P(1) is true.

Assume P(n) is true for n k where k is a positive integer.

Thus k 1 (k 1) 2 (k 2) 3 ...... 2 (k 1) 1 k

               



      





             
1

k(k 1)(k 2)
6

Consider n k 1:

LHS (k 1) 1 (k) 2 (k 1) 3 ...... 2 (k) 1 (k 1)

(k 1 1) (k 1 1) 2 (k 2 1) 3 ...... (1 k k) (k 1)

[ 1 2 ...... (k 1) k (k 1) ]

[ k 1 (k 1) 2 (k 2) 3 ...... 2 (k 1) 1 k ]

[ 1 2 ....

 

 
             
                
       

             

  
1

.. (k 1) k (k 1) ] k(k 1)(k 2)
6

1 k 1 1
(k 1) k(k 1)(k 2)

2 6
1

(k 1)(k 2)(k 3)
6
RHS

P(k 1) is true if P(k) is true.

By MI, P(n) is true for all positive integer.

       

 
    

   


 

Uses proper proof structure, including 
from LHS to RHS 
 
Proves P(1) is true 
 
States the assumption for P(k) 
 
Considers P(k+1), including the 
expression for LHS 
 
Simplifies the LHS of P(k+1) in order to 
use the assumption result 
 
Finds the sum of the AP 
 
Draws valid conclusion 
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Question 14 (9 marks) 
 
(a) Determine the value of  A  if                                           . (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let  P(t)  be the population of a certain animal species. Assume that  P(t)  satisfies the 
following equation: 
 
 
 
 
 
(b) (i) Find  P  in terms of  t. (5 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1A

)x200(x
xAx200

x200

A

x

1

)x200(x

200












dP P
0.2P(1 ) and P(0) 150

dt 200
  

t2.0

t2.0

t2.0

t2.0

e31

e600
P

3C150P,0t

eC1

eC200
P

ct2.0)
P200

P
(ln

td2.0Pd)
P200

1

P

1
(

td2.0Pd
)P200(P

200
)

200

P
1(P2.0

td

Pd
























Simplifies the RHS of the 
equation  
 
Equates the numerators to 
solve for A 

Separates the variables  
 
Uses result (a) to integrate 
 
Rearranges and simplifies terms 
 
Uses initial value to determine C 
 
States the answer 

x200

A

x

1

)x200(x

200





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 (ii) What is the long term behaviour of the population  P(t)? (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 








tas200P

tas
e3

e600

e31

e600
P

t2.0

t2.0

t2.0

t2.0

Shows the dominant term in 
the denominator as t    
 
States the answer 
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Question 15 (10 marks) 
 
The diagram below shows the polar graphs of  r = k  and  r =  + c  where  k  and  c  are 
constants and  0    . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Determine the values of  k  and  c. (4 marks) 
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 

x-2 – 3
2

–  – 
2


2

 3
2

2 5
2

y

-2

– 3
2

– 

– 
2


2



3
2

2








cc0:cr
2

3
kk

2

3
:kr

Chooses a nice point on r = k to determine k 
 
Solves for k 
 
Chooses a nice point on r =  + c to determine c 
 
Solves for c 
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(b) Points  A(r, )  and  B(r, )  are on the graphs of  r = k  and  r =  + c  respectively 
such that they have the same  r  and the distance between them is        .            

 
 
 (i) Show that    satisfies                                   .    (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 (ii) Determine the value(s) of  . (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3

)
2

cos1(
3

2 22 


)
2

cos1(
3
2

)
2

cos1()
2
3

(23

))
2

cos(1(r23

)cos(r2rr)3(

2
3

)0(
2
3

r

22

22

22

2222
















)
3

2
(0944.2Choose

......,6975.4,0944.2

:calculatorFrom

)
2

cos1(
3
2

Solve 22









Expresses  in terms of  
 
Uses Cosine Rule for the distance AB 
 
Substitutes values into equation, including  –  
in terms of  
 
Simplifies correctly 

Solves equation to obtain values of  
 
Chooses the correct value of  
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Question 16 (9 marks) 
 
The diagram below shows the graph of  y = f(x)  and the graph of its inverse function 
y = g(x) = f -1(x).  
 
A point  P(a, b)  is on the graph of  y = f(x). The tangent at  P  has a gradient  m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) State the value of  g( f(a) ). (1 mark) 
 
 
 
 
 
 
(b) Show that  g'(b) = 1/m. (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 

a))a(f(g 

x

y

y = f(x) 

y = g(x) 

P(a, b) 

gradient = m 

m

1
)b('g

)a('f

1
))a(f('g

)x('f

1
))x(f('g

1)x('f))x(f('g

x))x(f(g










States the correct answer 

Expresses the inverse relationship 
between f and g 
 
Uses chain rule to differentiate 
 
Simplifies correctly 
 
Substitutes values 
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(c) Find the coordinates of the point of intersection of the tangent at  P  and the tangent 
at  x = b  on the graph of  y = g(x)  in terms of  a,  b  and  m. (Assume  m  -1) 

      (4 marks) 
 
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
1m
bam

,
1m
bam

(:sCoordinate

1m
bam

x

)1m(yx

)2(and)1(

)2......(bxmamy

)bx(
m

1
ay:)x(gyon)a,b(atngentta

)1......()ax(mby:)x(fyon)b,a(atngentta






















Determines the equation of tangent 
at (a, b) on f(x) 
 
Determines the equation of tangent 
at (b, a) on g(x) 
 
Shows x = y 
 
Determines coordinates 
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Question 17 (10 marks) 
 
 
(a) Evaluate                                    (2 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) If                                                                         , show that:                    
 
 
  (5 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n4
0F(n) tan x dx where n 0, 1, 2, ......


 

)n(F
1n

1
)2n(F 




)n(F
1n

1

)n(F]xtan[
1n

1

dxxtandx
xcos
xtan

dx)1
xcos

1
(xtan

dxxtanxtan

dxxtan)2n(F

4/
0

1n

4/

0

n4/

0 2

n

4/

0 2
n

4/

0

2n

4/

0

2n



























 









Considers  tann+2x  as  (tannx)(tan2x) 
 
Uses the identity  1 + tan2x = 1/cos2x  
 
Simplifies the integral to obtain F(n) 
 
Uses the result from (a)  
 
Evaluates correctly 

n

2

tan x
dx (in terms of n) where n 0, 1, 2, ......

cos x


c
1n
xtan

dx)x(tan
xcos

1

dx
xcos
xtan

1n

n
2

2

n













Recognises  1/cos2x  is the derivative 
of  tan x 
 
Integrates correctly, including  c 
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(c) Using the result from (b), evaluate  F(4). Show working. (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3

2

4

dx
3
2

))0(F
10

1
(

3
1

)2(F
12

1
)4(F

4/

0





















Expresses F(4) in terms of F(2) and F(2) 
in terms of F(0) with correct values of n  
 
Uses an integral to evaluate F(0) 
 
Simplifies correctly 
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Re (z)1 2 3 4 5 6

Im (z)

1

2

3

4

5

Question 18 (8 marks) 
 
The figure below shows a shaded circle satisfied by a complex number  z. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Write an inequality that must be satisfied by  z. (1 mark) 
 
 
 
 
 
 
 
 
(b) Find the maximum exact value of  | z – 4 | .  (2 marks) 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2|)i23(z|  States the answer 

25

221|4z| 22
max





Finds the distance between 
3 + 2i  and  4 
 
Adds 2 
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(c) Find the minimum value (in radians) of  Arg (z – 4). (2 marks) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) Find the maximum value (in radians) of  Arg (4 –z). (3 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

93.0
2

1
tan2

)4zarg(ofmin

1









Shows the new centre at  
-1 + 2i 
 
Uses correct trig ratio to 
find angle 

21.2
1

2
tan2

)z4(argofmin

180rotation,axisxtheaboutreflection

:z44z

1












Provides reason/description for  4 – z 
 
Shows the new centre at  1 + 2i 
 
Uses correct trig ratio to find angle 

Re (z)-3 -2 -1 1 2 3 4 5 6

Im (z)

1

2

3

4

5

(c) (d) 
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